Prediction function for new data from a saved fairadapt object.

# S3 method for fairadapt
predict(object, newdata, ...)

Arguments

object

Object of class fairadapt, a result of an adaptation procedure.

newdata

A data.frame containing the new data.

...

Additional arguments forwarded to computeQuants().

Value

A data.frame containing the adapted version of the new data.

Details

The newdata argument should be compatible with adapt.test argument that was used when constructing the fairadapt object. In particular, newdata should contain column names that appear in the formula argument that was used when calling fairadapt() (apart from the outcome variable on the LHS of the formula).

Examples

n_samp <- 200
uni_dim <- c(       "gender", "edu", "test", "score")
uni_adj <- matrix(c(       0,     1,      1,       0,
                           0,     0,      1,       1,
                           0,     0,      0,       1,
                           0,     0,      0,       0),
                  ncol = length(uni_dim),
                  dimnames = rep(list(uni_dim), 2),
                  byrow = TRUE)

uni_ada <- fairadapt(score ~ .,
  train.data = head(uni_admission, n = n_samp),
  adj.mat = uni_adj,
  prot.attr = "gender"
)

predict(object = uni_ada, newdata = tail(uni_admission, n = n_samp))
#>      gender         edu         test        score
#> 801       0 -1.76238617 -1.211890953 -2.248523253
#> 802       0 -1.54667452 -2.036196837 -2.009755697
#> 803       0  1.17079453  1.169657867  1.191612986
#> 804       0  0.32899381 -0.108360551 -0.697736661
#> 805       0 -0.91324944 -0.212029256  1.984450007
#> 806       0 -0.43044750 -1.209261161  0.789841297
#> 807       0 -0.33257370 -1.074089405 -1.474926656
#> 808       0 -0.54486482  0.812795420  0.497834190
#> 809       0 -0.82170858 -1.353303876  0.982337819
#> 810       0 -2.00405830 -1.483878994 -1.670251654
#> 811       0 -0.34616002 -0.355804722  1.872163467
#> 812       0 -0.02736564  0.029302486  1.109306522
#> 813       0 -1.05996114 -0.364127628 -0.347495108
#> 814       0 -1.39135298 -0.946489317  0.841504242
#> 815       0 -0.35158523 -1.074089405 -1.031754054
#> 816       0 -1.10801481 -2.072601121 -1.038394788
#> 817       0 -1.31742723 -2.361166481 -1.253841133
#> 818       0 -1.30440964 -0.501127666 -1.127569653
#> 819       0 -1.17713378 -2.036196837 -1.321760978
#> 820       0 -0.05057400 -0.838020739  1.062412448
#> 821       0 -1.95841401 -2.710084882 -1.627486071
#> 822       0 -0.59217601  0.124843632  0.871076451
#> 823       0 -0.05057400 -0.108360551  0.667045683
#> 824       0 -0.29205193 -0.986191276 -1.783792760
#> 825       0  0.62092416 -0.114971666  0.050424648
#> 826       0 -1.23942580 -1.124719294 -1.244894150
#> 827       0 -0.33257370 -0.550042638  0.836772353
#> 828       0  0.56604172  0.807542567 -0.318456042
#> 829       0  1.66376035  1.480402631  2.299315681
#> 830       0 -1.97792341 -3.121796235 -0.780448031
#> 831       0 -1.10801481 -2.065701959  0.143680389
#> 832       0 -0.56226223 -0.605346499 -0.197988253
#> 833       0  0.67548760  0.868880270 -0.151364462
#> 834       0 -0.86922922 -2.646687427 -1.604124109
#> 835       0 -0.25647278 -1.440056662 -1.924364325
#> 836       0 -0.01533393 -0.820665352  1.861951160
#> 837       0 -1.95841401 -1.498305031 -1.462275080
#> 838       0  0.13835955 -1.790409294 -0.520312886
#> 839       0  0.22934773  0.106404515  0.318168927
#> 840       0  0.47789525  0.229617350 -0.422195985
#> 841       0 -1.26871101 -3.497560395 -0.094699039
#> 842       0  0.84408446 -0.305803234 -0.789176231
#> 843       0 -0.34616002 -0.550042638 -1.156295463
#> 844       0  0.69287651  0.539023997  0.988820130
#> 845       0 -0.09475179 -1.184286201 -0.383527997
#> 846       0  0.85944525 -0.005874030  1.297151367
#> 847       0 -0.97207326 -0.988067362 -0.509722245
#> 848       0  1.18481357  0.223671853  0.948738536
#> 849       0  0.50948254  0.031115903 -0.960078119
#> 850       0 -0.29512467 -0.004056565  0.069640746
#> 851       0 -0.28058714 -1.968535319 -0.642857333
#> 852       0  0.24114051  0.855783424  1.190722501
#> 853       0  0.69713539  0.246193257  1.672520558
#> 854       0 -0.97207326 -2.062871523 -1.376894259
#> 855       0  2.38118232  1.173632593  1.724080192
#> 856       0 -0.71691979  0.041877886  0.169921945
#> 857       0 -0.43951451 -2.782963224 -1.776423466
#> 858       0 -1.28317836 -1.390920653 -1.176246440
#> 859       0  0.24571723 -0.046012506  1.105173350
#> 860       0 -0.34616002 -1.434405915 -0.352586641
#> 861       0 -1.39340544 -2.227771994 -1.211904179
#> 862       0  0.65075203  0.870076964  0.172484884
#> 863       0 -0.25784738  0.184278366 -0.955779822
#> 864       0 -0.03731391 -0.556922603 -1.240644748
#> 865       0 -1.30440964 -0.348295627 -0.648786856
#> 866       0  0.83634837  1.801792786  0.816701249
#> 867       0 -0.65988002 -1.844452022 -0.468480289
#> 868       0  0.23614411  0.386751900  0.929639751
#> 869       0  1.65667516  1.174964842  0.453241313
#> 870       0 -2.02208129 -1.905372715 -1.723788786
#> 871       0  0.67290529  0.032173869 -0.035326898
#> 872       0 -0.28927476 -0.187664519  0.608830823
#> 873       0 -1.16736862 -1.865114023 -2.006507850
#> 874       0  0.20041711  0.344140793  0.113582414
#> 875       0  0.25339841 -0.356605410  1.462430907
#> 876       0  0.62365725 -0.972542179  1.586366410
#> 877       0  0.14883187 -0.348295627 -0.142862516
#> 878       0 -0.34616002 -0.244458389  1.685246091
#> 879       0 -1.17713378 -1.969555323 -0.172807492
#> 880       0 -2.18346033 -2.603903781 -0.935532589
#> 881       0 -1.72570731 -2.820512900 -3.559906963
#> 882       0 -1.55736943 -2.772926068 -2.731656754
#> 883       0 -0.35158523 -0.988067362  0.094147384
#> 884       0  0.93801692  0.957786338  2.973083804
#> 885       0  0.09755748 -0.393229676  0.856685667
#> 886       0 -1.74331471 -3.082900705 -2.279216961
#> 887       0 -2.34448816 -1.435563283 -2.255204660
#> 888       0 -1.97792341 -1.215501088 -1.624173997
#> 889       0  0.09756858 -1.156573500  0.095045586
#> 890       0 -3.06924223 -3.712797683 -4.430320178
#> 891       0 -0.56226223 -1.434405915 -1.282782046
#> 892       0 -0.73019707 -1.924209626 -0.867176978
#> 893       0 -0.10388291 -0.546331814 -1.116750069
#> 894       0  0.49814080 -0.395424735 -0.443540996
#> 895       0  0.51326062  0.674104083  0.954496259
#> 896       0 -0.16144575 -0.921971083  0.533034913
#> 897       0  0.82437660  0.838675786  2.434167705
#> 898       0 -0.56226223  0.107841476  1.738022171
#> 899       0 -0.40482500 -1.373614666 -2.522900649
#> 900       0  0.56256519 -0.624238187 -1.421399698
#> 901       0  0.79330411  2.024935105  0.876393816
#> 902       0 -2.00897346 -2.065701959 -3.336136856
#> 903       0 -1.00518193 -1.465181188 -1.620118314
#> 904       0 -1.76335258 -2.361166481 -1.298079833
#> 905       0 -1.31446601 -2.279801899 -0.194242511
#> 906       0 -0.40482500 -0.839388153 -0.539844056
#> 907       0  0.24571723  0.311425161  1.540468960
#> 908       0 -0.28997746 -2.038117414  0.377569531
#> 909       0 -1.30440964 -1.955211876 -0.518650912
#> 910       0  0.09756858 -1.074089405 -1.067862289
#> 911       0 -1.31609328 -1.754439190 -3.002032488
#> 912       0 -0.42331443 -1.375426561 -1.039456538
#> 913       0  0.48957851 -1.241887015  0.657435765
#> 914       0 -1.17713378 -1.434405915 -0.951787515
#> 915       0 -0.11869670 -1.566638938 -1.001299575
#> 916       0 -0.36228730 -1.498664881 -1.546853316
#> 917       0 -0.27417137  0.389377080  0.952588498
#> 918       0 -1.33156889 -1.559090289 -1.853927038
#> 919       0 -0.71706309 -1.275608741 -1.474532010
#> 920       0 -1.95841401 -2.276587625 -0.917686286
#> 921       0 -0.82017753 -1.582146965 -2.008219189
#> 922       0 -1.85499582 -2.496803403 -1.438337544
#> 923       0 -0.28840191 -0.756921041 -0.692028282
#> 924       0 -0.68699393 -1.480622677 -0.837267282
#> 925       0 -1.73656768 -2.390473070 -1.981547684
#> 926       0  0.24571723 -0.005874030  1.517489869
#> 927       0 -0.56027783  0.029302486  0.631959853
#> 928       0 -0.28840191  0.107841476  0.945444557
#> 929       0 -0.50719514 -1.840148830 -1.432336509
#> 930       0 -0.56226223 -1.124719294  1.250912889
#> 931       0 -2.92749251 -2.892119311 -2.289800236
#> 932       0  0.42719647  0.433596689  0.899829891
#> 933       0 -1.61068178 -1.443623594 -1.207835484
#> 934       0 -0.88440664 -0.440364450  0.465921575
#> 935       0 -0.63826637 -0.975313128 -0.280759713
#> 936       0  0.86814650  1.571927196  1.664871387
#> 937       0 -1.52454974 -0.370525777 -0.948986281
#> 938       0  0.93801692 -0.151819126  1.682221972
#> 939       0 -2.45535470 -3.121796235 -2.162776061
#> 940       0 -0.28997746 -0.355804722  0.587418523
#> 941       0 -1.33156889 -0.693222303  0.356856675
#> 942       0  0.06527531 -0.658202059 -0.317153475
#> 943       0 -1.54667452 -2.023746740 -1.481437987
#> 944       0 -0.56027783 -0.348295627 -1.990669444
#> 945       0  0.95781033  0.915731389  2.498366165
#> 946       0  0.28057936 -0.264326178  0.324320914
#> 947       0  1.80669879  1.084950383  0.895222646
#> 948       0  1.14755867  1.180202946  1.802367455
#> 949       0  0.59581414  1.926888054  0.364802173
#> 950       0  0.01456239 -0.342731345  0.381268872
#> 951       0 -0.67249027 -1.095405615  0.569697590
#> 952       0 -0.10045302 -0.818827187 -0.549087261
#> 953       0 -0.31126552 -0.682830213  0.166889733
#> 954       0 -1.30440964 -1.093176616 -0.911256296
#> 955       0  0.27966699 -0.244458389  0.213121286
#> 956       0  0.66508909  0.568883700  0.150221197
#> 957       0 -1.59801626 -2.266070448 -2.750619416
#> 958       0 -1.39088095 -1.755829534 -1.691135270
#> 959       0  0.24308580 -0.227891531 -1.326310399
#> 960       0 -0.60047991  0.288362252 -0.759343490
#> 961       0 -0.38061202 -1.420420046 -1.300735252
#> 962       0  0.47459251  0.036977119  0.829957649
#> 963       0  1.01232003  0.544826681  0.149567854
#> 964       0 -1.43119017 -1.093176616 -0.470509409
#> 965       0 -0.59816428 -0.962079122 -1.205855074
#> 966       0 -1.33156889 -1.498305031  0.617005511
#> 967       0 -0.83459906 -1.340114903 -1.219394858
#> 968       0 -1.30440964 -0.629011687  0.091312402
#> 969       0 -0.46492562  0.258910409  0.118477910
#> 970       0 -0.46355298 -0.549713195 -0.321729818
#> 971       0 -0.16144575 -1.515208888  1.218577031
#> 972       0 -1.00678886 -1.272298519  0.333778613
#> 973       0 -0.20732525 -0.790899405 -0.164120438
#> 974       0 -0.19867168 -1.424801374 -0.515737721
#> 975       0 -1.31742723 -0.968668154 -0.585724370
#> 976       0 -1.39135298 -2.105238961 -0.554345955
#> 977       0 -1.10801481 -2.504233176 -1.142323022
#> 978       0 -0.30265223 -0.403718017 -0.025212237
#> 979       0 -1.33156889 -1.481990330 -1.182021588
#> 980       0 -0.91324944 -1.559090289 -0.504013446
#> 981       0  0.95369779  0.506355585  0.524688786
#> 982       0 -0.93067447 -2.383798643 -3.030736973
#> 983       0  1.14904187 -0.124322538 -0.214029243
#> 984       0 -0.63826637 -0.244458389  0.531710091
#> 985       0 -2.00897346 -2.065701959 -2.195556550
#> 986       0 -0.88212247 -1.168627410 -0.231555284
#> 987       0 -0.02736564  0.243248892  2.017461669
#> 988       0 -0.63795435 -1.156573500  1.075378490
#> 989       0 -0.68699393 -0.550042638  1.104165903
#> 990       0 -0.28840191 -0.390671052  1.739168447
#> 991       0  0.46017993 -0.490180198  0.100981820
#> 992       0  0.21354142 -1.815610955 -2.239312858
#> 993       0 -1.57435407 -1.072093592 -1.288697389
#> 994       0 -0.56226223 -1.093176616  2.041889298
#> 995       0 -1.23878050 -2.409644152 -3.071024177
#> 996       0  0.11159425  0.682887893 -2.155281612
#> 997       0 -0.05483850 -0.244458389 -0.789234909
#> 998       0 -1.22256601 -0.814845191  0.049963241
#> 999       0 -1.54667452 -1.215501088 -0.360933334
#> 1000      0 -0.86701806 -1.689133889 -0.004731789